Bachelor’s thesis

Bachelor’s Programme in Computer Science

The Transformer Model and Its Impact on
the Field of Natural Language Processing

Matias Nieminen

June 28, 2023

FACULTY OF SCIENCE

UNIVERSITY OF HELSINKI

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@ecs.helsinki.fi
URL: http://www.cs.helsinki.fi/

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Faculty of Science Bachelor’s Programme in Computer Science

Tekija — Foérfattare — Author

Matias Nieminen

Tyo6n nimi — Arbetets titel — Title

The Transformer Model and Its Impact on the Field of Natural Language Processing

Ohjaajat — Handledare — Supervisors

Dr. Andrew Rebeiro-Hargrave

Tyo6n laji Arbetets art Level Aika Datum Month and year Sivumaara Sidoantal Number of pages

Bachelor’s thesis June 28, 2023 34 pages

Tiivistelméa Referat Abstract

Natural Language Processing is a hot topic in today’s Artificial Intelligence community for
its rapid development in the past decade. It covers areas of computation that aim to derive
insight from natural languages such as English or Sami in order to utilize them in subsequent
processes. Due to the developments, the field is increasingly important and is expected to
impact the world around us dramatically in the coming years. This thesis reviews the history
of language processing with a selection of some of the most influential models like recurrent
and convolutional neural networks. The Transformer model is unraveled and its performance is
reviewed in a set of varying tasks. Finally, recent developments like pre-trained transformers,
multi-modality, and language generation are inspected.

ACM Computing Classification System (CCS)
Computing methodologies — Artificial intelligence — Natural language processing
Discourse, dialogue and pragmatics

Avainsanat — Nyckelord — Keywords

natural language processing, Transformer, neural network, artificial intelligence, convolution, recurrence

Sailytyspaikka — Forvaringsstille — Where deposited

Helsinki University Library

Muita tietoja — Ovriga uppgifter — Additional information

Software study track

Lyhennelma

Vuonna 2017 julkaistun Attention Is All You Need -nimisen tutkimuksen jilkeen luon-
nollisen kielen prosessointi (NLP) on muuttunut l&hes téysin. Suurin osa tésté kehityk-
sesta saa kiittad Transformer-arkkitehtuuria, mikd on edellimainitun tutkimuksen esit-
teleméa NLP-menetelmé. Alunperin kyseista arkkitehtuuria esiteltiin kaytettaviksi kielten
kadntamiseen ja tulkkaamiseen, mutta sittemmin sitd on kaytetty kaytdnnossa kaikilla
NLP:hen liittyvilla alueilla. Tama tutkielma toimii lyhyena johdantona luonnollisen kie-
len késittelyn maailmaan, sen viimeaikaiseen kehitykseen ja siihen, miten Transformer-
pohjaiset mallit ja tekniikka nimeltd huomio (attention) ovat muuttaneet ko. tutkimusalueen
jopa laajalti kaupallisesti kannattavaksi alaksi, jollainen se nykypéaivand on. Nama toimi-

vat myos tutkielman tutkimuskysymyksina.

Luonnollisen kielen kasittely on tutkimuksen ja sovellusten alue, jossa tutkitaan, miten
tietokoneita voidaan kayttda ymmartamaédn ja kasitteleméan luonnollisen kielen tekstia
tai puhetta, seka tekemadn talla ymmaérryksella hyodyllisid asioita. Luonnollisen kie-
len kasittelya tehdadn lukemattomilla eri tavoilla, joista yksi on kontekstivapaa kielioppi
(Context-Free Grammar), jota kiytetdan useimmiten kdantéjissa ohjelmointikielten jésen-
telysséd. Muita NLP:n kdyttokohteita ovat konekdédntaminen (Machine Translation), chat-
botit ja puheen tunnistaminen (Speech Recognition). Kehittyneelle NLP:lle on ldhes ra-
jattomasti sovelluksia, jotka vaihtelevat lauseiden luomisesta tiivistelmiin ja vuorovaiku-
tukseen kaikenlaisten tietokonejérjestelmien kanssa. Yhteenvetona NLP on tutkimusalue,
joka keskittyy mallintamaan sitd, miten ihmiset kayttédvat ja ymmaéartavat luonnollista

kieltd, jotta sitd voidaan hyodyntaa erilaisten tehtavien laskennassa.

Yksi tarkeimmista osista tutkielmassa on lukijan johdattaminen NLP:hen kasittelemélla
ensin sen historiaa. NLP:n historiasta nostetaan joitakin kaikista merkittavimpia tapah-
tumia ja malleja, joilla NLP:td tehtiin ennen Transformer-mallin esittelyd. NLP:ta on
tehty jo 1940-luvulta asti, milloin sen kehitys oli todella hidasta alhaisten resurssien ja
tehottomien tietokoneiden takia. 1960-luvulla suurin osa rahoituksesta katkaistiin, silla
tuloksia joita oli toivottu ei yksinkertaisesti saavutettu. Siitd huolimatta ennen 1980-
lukuun mennessé oli kehitetty esimerkiksi SHRDLU-niminen simuloitu robottikési, joka
pystyi vuorovaikuttamaan kolmiulotteiseen palikkamaailmaan kéyttajan antamilla luon-
nollisen kielen kaskyilla. Samoihin aikoihin julkaistiin jarjestelméa nimeltd LUNAR, jonka
avulla kédyttaja saattoi olla vuorovaikutuksessa tietokannan kanssa. Kummatkin naista
projekteista olivat kehittyneita aikanaan, mutta toimivat chatbotit ja konekaantéajat oli-

vat viela pitkdn tyon takana.

Keinotekoisia neuroverkkoja taas ei juurikaan kdytetty ennen 2010-lukua siitd huolimatta,
ettd niiden kayttdminen alkoi olla laskennallisesti realistista. Sen sijaan suosituimpia
teknologioita ja malleja NLP:hen olivat lineaariset mallitu kuten logistinen regressio ja
tukivektorikoneet (Support Vector Machines). Ndméa mallit ovat binddrisia luokittelijoita,
jotka kéayttavat padasiassa hyvin moniulotteista dataa ennusteiden tekemiseen. Mallien
lineaarisuus myos tarkoittaa, etta jotta mallit pystyvit mallintamaan jotakin tietoa tarkasti,
pitda tiedon sisaltavien pisteiden olla jaettavissa suoralla viivalla tai tasolla niiden es-
itysavaruudessa. Teoriassa kaikki tieto voidaan téallaiseen formaattiin muuntaa, mutta
se usein vaatii jo valmiiksi moniulotteisen tiedon muuttamista yhé moniulotteisemmaksi.

Tama taas vaatii lisdéa laskentatehoa, ja ei siksi ole kidytannon kannalta robusti ratkaisu.

2010-luku oli syvaoppimisen (Deep Learning) ja keinotekoisten neuroverkkojen (Artificial
Neural Networks) vuosikymmen, ja sama trendi on jatkunut myos 2020-luvulle. Scopus,
joka on Elsevierin viittaustietokanta, sisdltad 3500 tutkimusta jotka mainitsevat syvéop-
pimisen 2000-luvulta, mutta 135000 samat kriteerit tayttavia tutkimusta 2010-luvulta.
Tama havainnollistaa hyvin syvaoppimisen popularisaation ko. aikakautena. 2010-luvulla
alettiin hyodyntda monia jo aiemmin keksittyja malleja kuten konvoluutioverkot (Convo-
lutional Neural Networks) ja pitkékestoinen lyhytkestomuisti -arkkitehtuuri (Long Short-
Term Memory networks), joilla padstiin sithenastisiin huipputuloksiin eri tehtévissé, kuten
tunneanalyysissé ja konekdantédmisessd. Lisdksi "moniuloitteisuuden kirouksesta' paéstiin

eroon niin kutsutuilla sanojen upotuksilla (word embeddings).

Seuraavaksi tutkielmassa esitellian ennen Transformer-arkkitehtuurin esittelemista kayte-
tyt huipputason suorituskykya demonstroivat mallit kuten konvoluutioneuroverkot, takaisinkytkey-
tyvat neuroverkot (Recursive Neural Networks, RNNs) ja pitkédkestoiset lyhytkestomuis-
tiarkkitehtuurit. Tata ennen kuitenkin tutustutaan yksinkertaisimpaan neuroverkon muo-
toon, Perceptroniin. Perceptron esiteltiin 1958-vuonna Frank Rosenblattin toimesta Cor-
nellin ilmailualan laboratoriossa. Sen inspiraationa toimi biologinen silmé ja siiné oli vain
nelja yksinkertaista komponenttia; Syotteet, painot, vinouma, ja itse neuroni. Neuronissa
taas on aktivaatiofunktio, joka paattad neuronin aktivoitumisesta, eli toisin sanoen si-
itd, mitd Perceptroni ajattelee. Syotteet koostuvat datasta, mita neuroverkolle annetaan.
Syotteet ovat numeerisessa muodossa, ja kaikilla niill& on vastaava paino jolla sy6te kerro-
taan ennen sen syottdmista neuronille. Kun skaalatut syotteet saapuvat neuroniin, niiden
yhteinen summa lasketaan ja siihen lisdtaan viela vinouma. Vinouma on staattinen luku,
joka antaa neuroverkoille liséda ilmaisukykya. Lopuksi neuroni antaa summan aktivaatio-

funktiolle, joka jolle yleinen operaatio on sigmoid-funktio. Sigmoid-funktion ulostulo on

Perceptronin tapauksessa myos sen itsenséa lopullinen ulostulo. Jotta Perceptroni ja sita
suuremmatkin neuroverkot saataisiin antamaan oikeita vastauksia, pitda aiemmin main-
intut painot viilata oikeiksi. Téméa tapahtuu koulutusdatan ja ns. vastavirta-algoritmin
(Backpropagation algrithm) avulla, jossa ensin annetaan Perceptronille jotkin satunnaiset
painot, ja sitten sen antaman oikean tai vdaran vastauksen avulla vastavirta-algoritmi

muuttaa painoja oikean vastauksen kannalta suotuisimmiksi.

Takaisinkytkeytyvat neuroverkot ovat neuroverkkoja, jotka toteuttavat rekursion solmujen
valilld, mahdollistaen palautetun yhteyden ja kontekstin sisallyttamisen soluihin. Ne sovel-
tuvat hyvin sekvenssimuotoisen ja ajallisesti muuttuvan datan mallintamiseen, ja niilld on
sovelluksia monilla eri aloilla. Toisin kuin eteenpéin syotetyt neuroverkot (Feedforward
Neural Networks) kuten Perceptroni, takaisinkytkeytyvid neuroverkkoja kéytettiessi ei
tarvitse valita tiettya kontekstikokoa, mutta taydellista aaretonta kontekstia ei voi kayt-
tda gradienttiin liittyvien haasteiden vuoksi. Gradientilla tarkoitetaan painon paivittéavaa
arvoa, joka lahtee késista takaisinkytkentojen takia, johtaen siihen, ettei neuroverkko opi.
Kontekstilla tarkoitetaan téssi sitd, montako sanaa tai "tokenia' neuroverkko muistaa.
RNN:illa on rajoitteita, kuten pitkat koulutusajat, monimutkaiset vastavirta-algoritmit ja
haviavat /rajahtavit gradientit, mika tekee niistd vihemmén optimaalisia pitkén aikavélin
riippuvuuksien oppimiseen. FErilaisia RNN-arkkitehtuureja ovat muun muassa monesta
moneen, monesta yhteen, yhdestd moneen ja yhdestd yhteen, joissa maarat viittaavat
syotteiden ja ulostulojen suhteeseen. Takaisinkytkeytyvin neuroverkon purkaminen vas-
taavaksi darelliseksi, eteenpéin syotetyksi neuroverkoksi mahdollistaa koulutuksen ajan
lapi kulkevalla vastavirta-algoritmilla (Backpropagation Through Time), mutta gradient-

tiin liittyvit ongelmat jatkuvat.

Gradienttien ongelma on ratkaistu ns. pitkdkestoinen lyhytkestomuisti -arkkitehtuureilla,
jotka kéyttavat portteja (gates) méirittelemédn, siilytetdanko jokin saatu syote soluti-
lassa (cell state) vai ei. Tadma estaa rajahtavat ja katoavat gradientit. Téastd huolimatta
arkkitehtuurin konteksti-ikkuna on rajattu noin kahteensataan tokeniin, silla pitkén vélin
riippuvuuksissa pitda luottaa arkkitehtuurin valimuistiin, joka ei kykene erottelemaan es-
imerkiksi sanajarjestysta viidenkymmenen sanan ulkopuolella. Lisdaksi rinnakkaislaskentaa
ei pystyta tehokkaasti hyodyntamaédn kaytettaessa mallia, silld jokainen ulostulo riippuu

edellisesta ulostulosta seka siihen liittyvasta neuroverkon tilasta.

Konvoluutioneuroverkot ovat myos eteenpéin syotettyja neuroverkkoja, joiden térkein om-
inaisuus on niiden konvoluutiokerrokset. Konvoluutiokerrokset tunnistavat kuvioita syot-

teessd. Téaman takia ne soveltuvat ensisijaisesti kédytettavaksi konendkoon, mutta tasta

huolimatta ne tuottavat hyvia tuloksia myo6s kielen prosessoinnissa. Toisin kuin takaisinkytkevat
neuroverot, konvoluutioverkkojen kanssa voidaan helposti kayttda rinnakkaislaskentaa.
Rajoitteita konvoluutioneuroverkoilla kuitenkin on pitkan matkan riippuvuuksien kanssa,

jonka liséksi ne tarvitsevat poikkeuksellisen suuren méaran dataa oppimiseen.

Ennen Transformer-mallin esittelyad huipputulokset tulivat joko konvoluutioverkkojen tai
takaisinkytkevien verkkojen toimesta. Tulokset kuitenkin kérsivat, silla molemmat mallit
karsivat huomattavista ongelmista joko konteksti-ikkunan tai rinnakkaislaskennan kanssa.
Konvoluutioverkot eivat muista kontekstia, takaisinkytkevat taas muistavat sen hieman
paremmin, mutta niiden laskenta-ajat nousevat suuren tietoméadran puitteissa niin ko-
rkeiksi, ettd ne eivat ole kdytannollisia. Transformer-malli vastaa kumpaankin néista on-
gelmista elegantisti. Alkuperdinen Transformer-malli on eteenpéin syotetty neuroverkko
jonka kanssa voidaan hyodyntaa rinnakkaislaskentaa tehokkaasti, ja joka sen lisaksi muis-
taa hatkdhdyttavian pitkan konteksti-ikkunan verrattuna edellisiin ratkaisuihin vakiolla
aikakompleksisuudella riippuvuuden etaisyyteen verrattuna. Sy6tteen koko kuitenkin vaikut-

taa sen aikakompleksisuuteen neliollisesti.

Transformer-malli on siis kokonaisuus, joka koostuu monesta eteenpéin syottivasta neu-
roverkosta ja tekniikasta tunnistaa sanojen valisia riippuvuuksia tekniikalla jota kutsutaan
"huomioksi'. Sen arkkitehtuuri perustuu enkooderi-dekooderi-arkkitehtuuriin, missa ensin
enkooderi luo numeraalisen version sille annetuista syotteistd. Naméa numeraaliset esityk-
set, eli sanaupotukset, sisaltavat tiedon sanan semanttisesta merkityksesta seka sanan suh-
teellisesta sijainnista syotteessa. Tutkielmassa kaydaén lapi suhteellisen yksityiskohtaisesti
miten tieto kulkee Transformer arkkitehtuurin lapi. Enkooderi muodostuu kahdesta péaa-
tasosta; Ensimmaisend vuorossa on niin sanottu "Multi-head attention", joka tarkoittaa
sanaupotuksen rinnakkaista prosessointia huomiomekanismilla. Jokainen huomiomekanis-
min instanssi tekee johtopaatoksensa kolmen eri vektorin avulla, jotka lasketaan sanaupo-
tuksesta kayttden eteenpédin syotettyja neuroverkkoja. Jokaisen instanssin ulostulo sum-
mataan sitten yhteen keskendén, jonka liséiksi alkuperdinen sanaupotus summataan tasta
saatuun vektoriin. Toinen taso saa syotteenadn tdmén summaoperaation normalisoidun
tuloksen. Se koostuu vain yhdesté eteenpéin syotetysta neuroverkosta. Myos toisen tason
ulostulo summataan tason syttteen kanssa — eli edellisen tason ulostulon kanssa — ennen
lopullisen ulostulon syottamista dekooderille. Tallaisia kahden tason enkooderitasoja taas

on 6 perikkéin alkuperaisessi Transfomer-mallissa.

Seuraavaksi enkooderitasojen ulostulo annetaan dekooderille. Dekooderin tehtéva on muut-

taa sen syote takaisin tekstiksi. Dekooderi koostuu samantapaisista osista, mutta sille

annetaan lisdksi koko Transformerin aiemmin tuottamat ulostulot. Tamé tekee Trans-
formerista autoregressiivisen mallin, eli sille syGtetdén takaisen sen itse tuottamat ulostu-
lot, kunnes se viimein antaa ulos "end'-tokenin. Toisin sanoen, Transformer raksuttaa

ikuisesti, kunnes se paattaa olevansa valmis.

NLP:ssé kiytetdan suorituskyvyn mittaamiseen yleisimmin tarkkuutta (precision), herkkyytta
(recall), ja naistd kahdesta vedettyd Fl-pisteytystd. Tamaén lisiksi konekdéntamisessa
kaytetaan BLEU-pisteytysta, mika méaaritelladn konekdannoksen samankaltaisuudella ih-
misen kdantdmaan ekvivalenttiin. BLEU:ssa arvion ollessa 1 on ihmisen kdannos identti-

nen konekadnnokseen. BLEU ilmoitetaan useimmiten prosenttina, eli skaalalla 0-100.

Transformerin vaikutus NLP:hen on ollut hyvin niakyvé. Alkuperdinen Transformer-malli
16i sen aikaiset ennédtykset WMT2014 tietoaineiston English-to-German konekaédntamis-
tehtéavissa selkealld 2.0 BLEUn erolla edelliseen ennétykseen. Téhan Transformer-malli
kaytti vain pienen osan koulutuksenaikaisesta laskennallisesta tehosta. English-to-French
tietoaineistolla se saavutti 0.44 BLEU:n parannuksen kayttamalld vain neljanneksen koulu-

tusajasta.

Alkuperiiset tulokset eivit saa kuitenkaan hamaéta, silla Transformerin esittelysté lihtien
samaan arkkitehtuuriin perustuvat mallit kuten Bidirectional Encoder Representations
from Transformers (BERT) ja Generative Pre-trained Transformer (GPT) ovat dominoi-
neet alaa. Néiden lisdksi on lukemattomia muita avoimen lahdekoodin malleja kuten
Transformer-XL, jotka dominoivat ennatyksid suorituskykymittauksissa. Tutkielmassa
tutkitaan 3:ssa eri tehtavassa parhaiten suoriutuvia malleja. Namé tehtéva ovat: Tekstin
luokittelu, Kysymys-Vastaus-parit, ja konekdantaminen. Naméa tehtavat valittiin, silla ne

edustavat Transformer-mallin monikykyisyytta.

Tekstin luokittelussa tutkielma katsoo IMDb-mittausta, missa IMDb-arvostelutietovarannosta
pyritdan tunnistamaan arvostelun padasiallinen tunne. Tamankaltaisissa analyyseissa
tukivektorikoneet ovat tuottaneet tyypillisesti parhaita tuloksia, mutta sittemmin Transformer-
pohjainen malli nimelta Transformer-XL on ottanut ykkossijan loistavalla 97.1:n tarkku-
udella. Kysymysten vastauksessa Transformer on luonnollinen valinta, ja siihen perustuva
malli XLNet saavuttaa 95.08:n F1-pisteytksen. Tamaén lisdksi ANNA-niminen Transformer-
pohjainen malli on saavuttanut jopa 95.719: Fl-pisteytyksen, mutta kyseista julkaisua

ei ole vertaisarvioitu. Konekadntdmiseen Transformer on jalleen luonnollinen valinta
sen alkuperdisen tarkoituksen takia, ja siind kaikki parhaat 5 mallia ovat Transformer-
pohjaisia malleja. Parhaat tulokset saa erityinen Transformerille kehitetty tekniikka nimelta

parametrien jako. Kyseinen tekniikka saavuttaa WMT2014:n English-to-German tieto-

varannolla 35.14 BLEU pisteet. Tama on siis huomattava kehitys alkuperaiseen Transfomer-

malliin, joka sai samasta tehtavasta pisteet 28.4 BLEU.

Sen liséksi, etta Transformer-pohjaiset mallit dominoivat suoritukykymittauksia, niiden
tehokkuus on tehostanut aiemmin hankalia konsepteja. Naihin kuuluu esimerkiksi ennalta
koulutetut mallit, joita kehittajat voivat sitten hienosdataéd omiin tarkoituksiinsa sopiviksi.
Naista malleista tunnetuin esimerkki lienee GPT-perhe, joista GPT-2-mallin ldhdekoodi
on avoimesti saatavilla. Toinen esimerkki on jo aiemmin keskusteltu BERT. Tallais-
ten mallien vapaa saatavuus on muuttanut osaltaan NLP:td kaupallisessa maisemassa.
Transformer-mallin tehokkuus avasi myos reittejé generatiivisessa tekodlyssé, mikéd nakyy
esimerkiksi Transformer-mallien ylivertaisuudessa kysymys-vastaus-tietovarantojen suori-
tuskykymittauksissa. Suurimmillaan Transformer-mallit saattavat olla jopa satojen mil-
jardien parametrien malleja. Téllaisesta esimerkki on GPT-3.5, missd on 175 miljardia
koulutettavaa parametria. Néin Transformer-mallit pystyvat toimimaan myo6s useilla eri
kielilld, sekd ottamaan tietoa vastaan samanaikaisesti kuvaformaatissa. Téasté, ja edel-
lamainittujen Transformerien kilpailuetujen ansiosta kielimallien generatiivinen ilmaisu-

voima on noussut huomattavasti. Tama on johtanut kaupalliseen lapimurtoon.

Transformer-malli on siis johtanut NLP-alan murrokseen tutkituilla osa-alueilla. Té&han
syyt ovat olleet Transformer-mallin loistava huomiomekanismi, rinnakkaistettavuus, pitkan
matkan riippuvuuksien kasittely, siihen perustuvien mallien laaja adoptio tutkimuksessa

ja teollisuudessa, seka syvaoppimismetodien popularisaatio.

Contents

1 Introduction

2 Historical Overview

2.1
2.2
2.3

24

2.5

2.6
2.7

3 The
3.1
3.2

Toward Deep Learning oo

Re-emergence of Deep Learning

The Perceptron

2.3.1
2.3.2

Architecture of The Perceptron
Backpropagation

Recurrent Neural Networks

24.1
2.4.2

Architecture of Recurrent Neural Networks

LSTM . . e

Convolutional Neural Networks

2.5.1

Architecture of Convolutional Neural Networks

Pre-Transformer State-Of-The-Art
Bottlenecks of NLP Before the Transformer

Transformer Model
Architecture of The Transformer Model

The Journey Through The Transformer

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8

Word embeddings and Positional Encoding
The Encoder Stack,
Multi-head Self-attention
Residual Connection and Normalization
Position-wise Fully Connected Feedforward Network
The Decoder Stack
Decoder Multi-head Self-attention and Masking
Feedforward Neural Network, Linear Classification, and Final Token
Probabilities

o = O ot ot ot w W

e e e
_~ N = = O

3.3 Limitations of The Transformer Model

4 The Transformer Model’s Impact

4.1 Overview of The Tasks Transformers Achieve High Performance In.

4.1.1 The Original Transformer Model
4.1.2 Transformer-based Models
4.1.3 Performance Conclusion
4.2 Byproducts of The Transformer Model
4.2.1 Pre-training
4.2.2 Generative AT
4.2.3 Multi-lingual and Multi-modal Capabilities

5 Conclusion

Bibliography

22
22
22
23
24
25
25
25
26

27

28

1 Introduction

After the famous paper Attention Is All You Need [56] was published in 2017, Natural
Language Processing (NLP) has come a long way. Much of this development can be
attributed to the Transformer model, which was the paper’s novel proposition in Neural
Network (NN) model architecture. The Transformer’s use cases have expanded to almost
all areas of Artificial Intelligence, despite initially being proposed for machine translation
tasks [56]. While the Transformer has proven useful in a broader range of problems, this
thesis focuses its attention on the notorious model’s impact on the field of NLP. This thesis
will serve as a brief introduction to the world of NLP, its recent developments, and how
Transformer-based models and a technique called attention have transformed the area of

research into the commercially viable trend that it is today.

A concise definition for NLP is provided in [10]: "Natural Language Processing is an
area of research and application that explores how computers can be used to understand
and manipulate natural language text or speech to do useful things'. NLP was initially
utilized at an intersection of artificial intelligence and linguistics, although, not all NLP
is in the context of artificial intelligence. NLP is conducted in a myriad of ways, one
of which is Context-Free Grammar, which is most often used in compilers in parsing
programming languages [44]. Other uses of NLP include machine translation, chatbots,
and speech-to-text. There are near-infinite applications for advanced NLP, ranging from
generating sentences to summarizing papers to interacting with computer systems of all
kinds. In summary, NLP is a research area concentrated on modeling how humans use

and understand natural language in order to utilize it in the computation of various tasks.

One of the most prevalent applications of NLP is Large Language Models (LLMs). LLMs
are programs that attempt to model and process language in various ways often utilizing
Deep Learning (DL) techniques, some of which are described in chapter 2. LLMs are used
in all areas of NLP and can be trained on vast amounts of sequential data. Before the
Transformer network architecture was introduced, state-of-the-art LLMs were composed of
a combination of convolutional and recurrent network layers. Similarly to the Transformer,
they also made use of encoder-decoder architectures. Due to advances in LLMs in recent
years, the area of NLP has taken tremendous leaps. LLMs such as OpenAl’s Generative

Pre-trained Transformer (GPT) and Google’s Bidirectional Encoder Representations from

2 CHAPTER 1. INTRODUCTION

Transformers (BERT) have taken the world by storm by breaking the barrier between
everyday consumer utility and Artificial Intelligence (AI).

At the heart of the growth in LLMs is the Transformer model, introduced in late 2017 by
researchers at Google Brain, Google’s deep learning research unit. The Transformer model
uses a technique called self-attention that allows the model to draw distinctions between
tokens in sequential data with more specificity [3]. While the Transformer is not the
first model to use an attention mechanism, it was the first to rid itself of using so-called
convolutional and recurrent layers. Despite the dispensed complexity, the Transformer
quickly performed better in a number of tests used to approximate the capability of a
language model. Among other benchmarks, these tests included WMT 2014 English-To-
German and English-To-French translation tasks that are designed to evaluate the state

of the art in machine translation tasks [6].

Generalizability was evaluated with tests on English constituency parsing, in which the
model analyzes sentences by breaking them down into parse trees of Part-Of-Speech (POS)
tags. The Transformer model was able to perform better than all previously reported
models with an exception of Recurrent Neural Network Grammars [56], a model that

explicitly models nested, hierarchical relationships between words and phrases [18].

Transformer-based models are not the only contributor to the rise of impressive LLMs.
Other factors like the availability of data through the internet, continuously increasing
computational power, sophisticated optimization algorithms, and more all play a part
in making LLMs more robust. To unravel the impact of the Transformer model, we will
briefly look into the history of language modeling, how the Transformer model is composed
and how it processes data on a grassroots level, how state-of-the-art language modeling
has been affected by the integration of Transformer-based models, and what effects this
has had on the field in the context of research, and commerce. We will take a look at the
most influential models and the architectures behind them, how they have affected the

landscape, and how they have been utilized.

2 Historical Overview

NLP has a long history of different kinds of solutions to different kinds of problems.
To understand the impact of the Transformer, this section covers briefly a selection of
innovations and solutions that have been presented before the popularization of DL and

the Transformer.

2.1 Toward Deep Learning

Natural Language Processing dates back to the 1940s. Many of the challenges that re-
searchers faced in the dawn of NLP have been wiped out simply through technological
advances like the dramatic increase of computational power. Despite its long history,
the focus has been geared toward machine translation. Not much progress was made in
the first two decades of NLP, which lead to much of the funding for machine translation
projects being cut in 1966. Nevertheless, notable systems developed after 1966 and 1980
include SHRDLU, which is a simulation of a robot arm that could respond to a limited
amount of commands given in natural language that regard a simple world of blocks that
the robot arm could interact with. Users could ask questions, make statements, and give
orders to SHRDLU. In terms of the generality of a model, SHRDLU was a significant feat
at its time in 1972 [17]. Around the same time, a database interface system titled LUNAR
was demonstrated for the first time. LUNAR was based on Augmented Transition Net-
works and Woods’ Procedural Semantics. Approaching the 80s, the most notable advances
in the field of NLP were related to the syntax of different languages. Language models
were still based on complex rule sets and much less progress had been made than what
was anticipated in the 1960s [29]. While the first Artificial Neural Network (ANN) was
introduced early on in the 1940s [1], significant results in NLP via ANNs only began to
appear in 2000, when [5] proposed a feed-forward neural network to be used in conjunction
with a lookup table. In the conducted tests, the ANN performed substantially better than
the standard trigram language model that was used at the time. Truly conversational
language models were still beyond the horizon, but more papers concerning deep learning

methods in NLP began to appear.

Despite advancements in computation and ANNs in the first decade of the 21st century,

4 CHAPTER 2. HISTORICAL OVERVIEW

NLP was dominated by linear models such as Support Vector Machines (SVMs) and lo-
gistic regression that used high dimensional data and sparse vectors to represent tokens.
Despite being popular in NLP, SVMs are binary classifiers, which means that they can
output one of two values. This requires the data to be in a linearly separable format,
which means that the represented classes of data can be divided on opposite sides of a
straight line or plane. Moreover, SVMs can transform non-linear data to be linearly sep-
arable using kernel functions. A kernel function is simply an operation that is performed
on the data points in order to transform the data into a desired shape. Any data can be
transformed to be linearly separable, but transforming it requires the SVM to increment
the dimensionality of the data. Increasing the dimensionality of the data will lead to the
number of possible solutions increasing exponentially [23], which limits the SVM signif-
icantly in more complex relationships between variables. Similarly, other linear models
are not sufficient in modeling real-world data, as strictly linear dependencies are rarely
present in real-world scenarios. Some of the more influential papers before the 2010s were
[47] and [12], which serve as good estimations of the state of NLP in the early 2000s.

In [47] Pang et al. examine whether sentiment classification can be treated as a spe-
cial case of the already established genre of topic classification. Pang et al. employ the
common classification methods of the 2000s, Naive Bayes, Maximum Entropy, and SVM
classifiers. Their approach, while outperforming the human-produced baselines, can’t per-
form to the standard of topic classification. Pang et al. argue that more subtle analysis
and more sophisticated algorithms are required so that the focus of a sentence can better
be determined [47]. In 2008, as computation was allowing larger NNs to be built, [12]
introduced a Convolutional Neural Network (CNN) that, given a sentence, would output
different predictions such as POS tags, chunks (syntactic constituent labeling). The archi-
tecture defined by [12] wanted to overcome the typical failings of shallow, linear classifiers.
The CNN was able to improve upon previous NNs and parse tree-based solutions in se-
mantic role labeling, which Collobert et al. defined as the most important task of their
model. Further advancements lead to the emergence of NNs as viable tools for all kinds
of machine-learning tasks. Some of the earlier advancements sprung from computer vision
applications, but have spread onto NLP applications with increasingly complex models

being proposed for complex NLP problems [60].

2.2. RE-EMERGENCE OF DEEP LEARNING >

2.2 Re-emergence of Deep Learning

Deep learning has become an increasingly popular research topic. We queried Scopus,
Elsevier’s citation database, and found 135,000 papers that mention it appearing from
2011 to 2020. A stark contrast to the 3,500 papers mentioning deep learning found from
2001 to 2010 within the same database. State-of-the-art solutions began to emerge in
computer vision and NLP with models such as CNNs, Long Short-Term Memory networks
(LSTMs), and Recurrent Neural Networks. One of the major contributions to the rapid
success of DL in NLP is the reduction of the dimensions of word representations. The
reduction was achieved with distributed word representations called word embeddings.
The most influential paper on such representations was [43], which introduced extensions
to a word embedding model called skip-gram, making it faster and producing more regular
word representations. Skip-gram and CBOW were initially proposed by [42] in their 2013
paper and are themselves simple fully connected neural networks. The following is a brief

introduction to the most common NN architectures before the Transformer was introduced.

2.3 The Perceptron

Neural networks consist of units called neurons that are connected to each other by weights.
In order to better understand the architectures of larger and more complex NNs, let’s look
at the most simple NN there is, The Perceptron, which was introduced in 1958 by Frank
Rosenblatt at Cornell Aeronautical Laboratory [50]. The Perceptron can be thought of as
a Feedforward Neural Network (FNN) which is limited in its ability and can only produce
linear classifiers, due to not utilizing the added complexity of hidden layers. However, The

Perceptron serves as an excellent example of the most basic components in NNs.

2.3.1 Architecture of The Perceptron

The Perceptron consists of a single neuron and is composed of 4 main parts; The inputs
Z, weights @ and a bias b, the neuron that is connected to the inputs by the weights,
and the activation function. The inputs can be represented as a one-dimensional vector of
real values, where each of the values represents a feature. A single input does not provide
feedback to neurons preceding it, as there is only one neuron, which is why The Perceptron

is an FNN. There is no limit on how many features can be fed into the neuron. After the

6 CHAPTER 2. HISTORICAL OVERVIEW

(LODALITED
CONNICTIONS)

RENFONIES

Bl

Figure 2.1: Organization of the Perceptron, [50]

inputs have traversed to the neuron through the synaptic weights, the neuron performs a

weighted sum operation. The weighted sum can be defined as the following:

k
weighted sum = Z (w;x;)
i=1
where k denotes the number of features and w; denotes the weight corresponding to the

input z;.

After the weighted sum is calculated in the neuron, the bias b is added to the total. The
bias enables the Perceptron to reach a better result by allowing it to approximate any
linear function in the classification. The result of the weighted sum is forwarded to the
activation function. In our example, the activation function is defined as the Sigmoid
function:

activation(input) = [
e mpu

but other functions can be used. The activation function produces the final output of the
Perceptron, which is why the Sigmoid function is a natural choice, as a single Percep-
tron is only capable of binary classification. The Perceptron, much like any other neural
network, can learn by adjusting its weights based on training data and a method called

backpropagation.

2.3.2 Backpropagation

Backpropagation is an algorithm that tunes the weights of an NN based on the distance
between the NN’s prediction and its target. An NN can be trained by running back-

propagation on each of the examples in the training set, thus iteratively approaching the

2.4. RECURRENT NEURAL NETWORKS 7

optimum values for the weights. Modern backpropagation is derived from Automatic Dif-
ferentiation [4], which was introduced by a Finnish university student Seppo Linnainmaa
in 1970 in his Master’s thesis [38]. In ML and DL, the loss function is performed on the
final output of the model to determine the model’s performance on said output. Training
data can consist of a series of tuples (z,y), where x denotes a data point from which a
prediction is to be derived, with the correct prediction being y. The loss function of a NN
takes the final output, or prediction, of the network and determines the cost associated
with the prediction by measuring the distance between the prediction and the target y.
A commonly mentioned loss function for classification tasks is cross-entropy. The back-
propagation algorithm being utilized in the training uses the output of the cost function
to determine the gradient of each of the layers’ weighted input in order to adjust each of

the weights so that the output of the cost function is minimized.

2.4 Recurrent Neural Networks

Recurrent Neural Networks are NNs that implement recursion between the nodes of the
network. RNNs include both feedforward structures and feedback connections, where
the structures that include feedback connections provide context to the network. The
feedback connections reach from the hidden layers or the output layers to nodes that are
called context nodes, which are located in the preceding layers of the network [41]. This
early modeling of the RNN has since been improved on, with the context length becoming
theoretically infinite, with the drawback of extremely slow training times [14]. The ability
to remember is what makes RNNs particularly suited for detecting patterns in sequential
and time-varying data, allowing them to have a breadth of applications ranging from NLP
to computer vision to signal processing [41]. RNNs present their own limitations with long
training times, complicated backpropagation algorithms, and vanishing gradients, making
them less than optimal for long-term dependencies. RNNs can be partially connected or
fully interconnected. The first RNN was introduced by J.J. Hopfield in 1982 in his paper
Neural networks and physical systems with emergent collective computational abilities
[28].

8 CHAPTER 2. HISTORICAL OVERVIEW

2.4.1 Architecture of Recurrent Neural Networks

In comparison to FNNs, when training an RNN there is no need to select context size,
as the whole context size can theoretically be used. Context size refers to the number of
words that are taken into account in the model’s decision-making. This is a significant
improvement over the FNN, as configuring the size of the context is often a very tedious
task [14]. However, the full, infinite context can’t be used due to the exploding and
vanishing gradient problem. Methods such as Long Short-Term Memory Units (LSTMs)
have been developed to combat the vanishing gradient issue. Moreover, the RNN pales
when it comes to interpretability, whereas FNNs are more intuitive [14]. Interpretability is
an issue that is increasingly important within the field of NLP due to recent developments
in LLMs that have sparked discussions about Artificial General Intelligence (AGI), an
unrealized concept of Al models that possess human-like ability to learn. A traditional
RNN architecture, which has been unfolded into an FNN is as follows [49]:

Figure 2.2: General many-to-many RNN architecture [49]

> >

where <> is an input in an input sequence, a<* is an activation function and y<*
is an output of the RNN for 2<%>. This is a representation of an RNN of type many-
to-many. In a many-to-many architecture, sequences are fed into the networks one at
a time, with the network always receiving the previous output y<*> as the input with
a possibility of another member of the input sequence being fed in subsequently, which
ultimately produces the output y<‘*1>. This iterative process is repeated until the last
member of the input sequence has been processed [33]. One iteration is commonly called
a timestep t. A timestep t corresponds to the state of the network after the input <=1,
For example, after the first input in a sequence, t = 1. Other architectures include many-
to-one, where outputs are not generated from individual members of the input sequence,

but the hidden state is passed on to the next timestep of the network. Many-to-one RNNs

2.4. RECURRENT NEURAL NETWORKS 9

are commonly used for tasks such as sentiment analysis or text classification. One-to-
many, where multiple outputs are generated from a sequence of length 1, the input might
represent a genre of music, and the output the notes of a generated song. One-to-one,
which corresponds to a traditional FNN [33].

As Deep Learning (DL) models, simple RNNs are composed of three general components,
the input layer, hidden layers with hidden recurrent states, and the output layer. The
major difference to FNNs is the presence of recurrent hidden states. As is the case with
the Perceptron, the input of the neural network can be represented as a vector ¥ that’s
cells represent the features of the input data, where the size of the vector Z is equal to
the number of neurons in the input layer. In RNNs, a popular choice for the activation

function is the hyperbolic tangent, which is defined as

et —e™ "

tanh = ——
et + e "

[51], but similarly to the Perceptron, ReLU, and Sigmoid are common activation functions.
RNNs are optimal for sequential data, and there exist many different ways to map inputs

to outputs. Different mappings correspond to different kinds of architectures of RNNs.

For each RNN, there exists an equivalent FNN that has a finite number of steps [51]. The
FNN can be found by unwrapping the RNN to parts such as the ones presented in figure
2.2. These unrolled RNNs can be trained with a special case of backpropagation called
Backpropagation Through Time (BPTT) [51]. This also removed the initial limitation of
backpropagation not being suitable for training RNNs. BPTT is a supervised training
algorithm applied in the same way as the general backpropagation in conjunction with
gradient descent. Backpropagation is not without issues when it comes to RNNs. For
backpropagation to be used, the RNN must be unwrapped into a sequence of FNNs that
share the same set of weights with each other. Each new FNN receives a new input and
is linked to the previous FNN via activation functions. As the gradients of the activation
functions propagate over their predecessors, they multiply each other. Due to the weights
being shared across the FNNs, the multiplications happen between weights that are likely
to be of a similar value. This leads to the gradient either fading to obscurity with small
weights or exploding up to very high values [33], thus making it difficult for the RNN to

learn long-term dependencies.

10 CHAPTER 2. HISTORICAL OVERVIEW

Forget Input Output A
wate gate fate
-y T u | ()
- ——
1)
I ol
%)
hie-1) | | hin
S~ _ I ’

X

Figure 2.3: Architecture of LSTM with a forget gate [61].

2.4.2 LSTM

Long Short-Term Memory was introduced by Hochreiter and Schmidhuber in 1997 [27]
in their attempt to deal with the long-term dependency issue in RNNs. LSTMs handle
the problem of vanishing and exploding gradients by introducing gate functions into the
structure of the neurons. In the most barebones implementation of LSTM, input and
output gates operate within the cell to decide whether to retain a specific input in the cell
state, respectively the output gate decides what kind of information can be output from
the cell based on the cell state [61]. However, when LSTM cells are generally in reference
to cells that in addition to the input and output gates, have an additional forget gate
preceding the input gate. The forget gate can decide whether the cell state completely
discards certain information from the cell state. The cell state represents the long-term

memory of the LSTM and is not present in RNNs.

LSTM architecture with a forget gate can be examined in Figure 2.3, where x(¢) denotes
the input, h(t) the recurrent information, c(¢) denotes the cell state, at timestep t. The
forget-gated LSTM is not without its issues. There are no direct connections between the
cell state and the gates, which leads to loss of information and thus harms the model’s
performance. For this, there is another architecture that utilizes peephole connections
to establish information flow between the cell’s current internal states. This approach
allowed the LSTM to learn to time, count, and act in a nonlinear fashion, which in turn

makes the LSTM a compelling model for real-world use cases.

After its introduction, LSTMs became the center of attention in DL research and they are

2.5. CONVOLUTIONAL NEURAL NETWORKS 11

still used today in a variety of tasks involving sequential data. In [61] LSTMs are divided
into two categories; LSTM-dominated networks and integrated LSTM networks [22].

2.5 Convolutional Neural Networks

A Convolutional Neural Network, also known as ConvNet, is an Artificial Neural Net-
work. CNN architecture dates back to 1979 when Kunihiko Fukushima introduced the
Neocognitron, a model utilizing convolutional layers [19]. The defining property of a CNN
is the use of convolutional layers, which themselves are composed of filters that can detect
patterns in the input data. This makes the CNN intuitively fitting for image recognition,
which remains the primary use for CNNs. Still, CNNs can be utilized in NLP and sequen-
tial data and have proved to be the natural choice when wanting to extract higher-level
features from n-grams or constituting words [60]. CNNs have considerable limitations.
They require a particularly large data set to efficiently train the huge number of trainable
parameters. Additionally, long-term dependencies are not retained, which makes CNNs

sub-optimal in determining the effect of mutually distant tokens [60].

2.5.1 Architecture of Convolutional Neural Networks

CNNs take advantage of a myriad of different techniques when it comes to architecture.
They combine fully connected layers with convolutional layers and pooling layers. CNNs
can be trained with backpropagation. Convolutional layers can learn feature representa-
tions from the input data, which it does with so-called convolution kernels. The purpose
of a convolution kernel is to compute a feature map, which in turn can be used for pre-
dictions. Convolution kernels in shallower layers of the network are designed to detect
low-level features such as edges or curves, whereas kernels deeper into the network can
detect more abstract features. The final feature maps are constructed from outputs of

multiple kernels [24].

Pooling layers are typically inserted between convolutional layers to reduce the resolution
of the feature maps. This reduces both shift invariance and the connections needed be-
tween the convolutional layers. Shift invariance refers to the output of the model being
indifferent to shifts in the order of the input data. CNNs were long thought to be shift-
invariant due to convolutional layers being shift equivariant and pooling layers, which
build stability to deformations [9]. However, CNNs have been found to be affected with a

12 CHAPTER 2. HISTORICAL OVERVIEW

probability as large as 30 percent by a mere 1-pixel shift in the input image. This problem
has been addressed by replacing conventional linear pooling layers with adaptive polyphase
sampling, which has proved to make models that utilize it 100 percent shift invariant. In
layman’s terms, shift invariance simply allows the CNN to recognize features that aren’t
exactly like the ones it has been trained on, thus improving generalizability. There are
different kinds of methods for pooling, which include max pooling, average pooling, and

min pooling.

After the convolutional, pooling, and feedforward reasoning layers, there is most often a
softmax output layer. The softmax layer is popular due to its fit for classification tasks.
Another approach is to use SVM in conjunction with the features of the CNN to help in
classification tasks [24]. A great case study for the architecture of a CNN is the famous

LeNet-5, which was one of the earliest convolutional neural networks.

2.6 Pre-Transformer State-Of-The-Art

In machine learning tasks, model performance is commonly measured by three different
measurements called accuracy, recall, and Fl-score. Accuracy can be thought of as the
quality of the predictions that the model is making, as in what percentage of the positive
predictions was actually correct. Recall measures the proportion of positive samples that
were predicted correctly. Fl-score is slightly more sophisticated and it is measured as the
harmonic mean of precision and recall. F1l-score is described as the accuracy of the model.
The measurements are based on the distribution of true and false predictions. In binary
classification, a prediction can be one of four types, True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN). The following are the mathematical

definitions of precision, recall, and F1-score:

TP TP Precision - Recall
recision TP - FP Recall TP © FN 1

" Precision + Recall

Additionally, other measurements like Mean Reciprocal Rank (MRR) and Mean Average
Precision are used by [59]. MRR and MAP are better suited for evaluating tasks where a

list of possible responses is produced based on probability.

Pre-Transformer state-of-the-art refers to model performance in NLP tasks before Transformer-
based models started to appear in late 2017 and after. In 2017 and the few preceding years,

the state-of-the-art multitasking models combined techniques from different domains. One

2.7. BOTTLENECKS OF NLP BEFORE THE TRANSFORMER 13

such model is introduced by Kaiser et al. [31] and takes advantage of convolutional lay-
ers, attention mechanism, and sparsely-gated layers to reach good performance in various
language tasks like image captioning, classification, and language translation. Despite
good performance, the model presented by [31] was not able to reach state-of-the-art
when compared to task-specific models. In terms of state-of-the-art task-specific models,
rapid competition existed between RNNs like LSTMs, Gated Recurrent Units (GRUs),
and CNNs. Despite NLP tasks being sequential in nature, CNNs were continuously able

to outperform past RNN models [59], and vice versa.

The architectures were compared systematically in 2017 by Yin et al. [59] in the follow-
ing tasks: sentiment /relation classification, textual entailment, answer selection, question-
relation matching in Freebase, Freebase path query answering, and part-of-speech tagging.
The Stanford Sentiment Treebank (SST) and WikiQA datasets are used in [59] to mea-
sure CNN’s; LSTM’s, and GRU’s performance in sentiment classification and question
answering. The SST is a fully labeled parse tree dataset that consists of movie reviews
and their sentiment, in which the sentiment is either positive or negative. In SST, the
best performance was derived from the GRU model, which reaches an 86.32 percent ac-
curacy, leading the LSTM by up to 1.8 percent and the CNN by up to 3.9 percent. A
more interesting category that LLMs are tested on is question answering. In the tests
conducted, the WikiQA dataset was used to evaluate model performance by MRR. The
WikiQA dataset is a collection of question and sentence pairs in which there may be 0 or
more correct sentences corresponding to a question [57]. The results in Answer Selection
with the WikiQA dataset revealed the CNN to be superior to the RNN-based models by

an advantage of up to 1.4 points.

Machine Translation (MT) is another significant task of LLMs. MT is commonly evaluated
using a collection of datasets from Workshop on Statistical Machine Translation (WMT). It
consists of four different tasks; News translation, quality estimation, metrics, and medical
translation. Machine translation is evaluated on an algorithm called the Bi-Lingual Eval-
uation Understudy (BLEU), in which the measure of quality is how closely the machine
translation mimics the human-translated equivalent. As such, BLEU is a metric of simi-
larity between 0 and 1. State-of-the-art results prior to the Transformer for the WMT2014
English-French dataset measured in BLEU were 41.44 [20], achieved with a fully convo-
lutional sequence-to-sequence model called ConvS2S. ConvS2S was also able to produce
state-of-the-art results in WMT2014 English-German and WMT2016 English-Romanian
datasets, triumphing the previous records by 0.5 BLEU and 1.9 BLEU respectively.

14 CHAPTER 2. HISTORICAL OVERVIEW

2.7 Bottlenecks of NLP Before the Transformer

Despite different gating methods used by LSTMs and GRUs, long-term dependencies
continued to be the bottleneck in NLP applications. While LSTMs improved the long-term
dependency issue in RNNs and made the context window theoretically infinite, applying
such a long context size in practice is not possible. The average context size of an LSTM
model is only around 200 tokens [34]. Moreover, successful LSTMs utilizing caching rely
heavily on the cache for long-term dependencies and do not distinguish between the word
order of long-term dependencies that are outside a 50 token range[34]. This limited the
ability of state-of-the-art models significantly, as global context was not available to the
model. In addition to that, some tokens are entirely ignored by RNN-based models,

resulting in a loss of information.

Parallelization before the Transformer model was a very prevalent issue, notably with
RNN-based models, as their training is fundamentally a sequential operation. Never-
theless, some parallelization techniques exist for RNNs. Some of these include asyn-
chronous training algorithms that reduce synchronization overhead between distributed
neuron nodes and the interactive node via sampling and mean fusion strategies. Without
exploring this in detail, these strategies were found to enhance training efficiency while
only decreasing model accuracy by less than 1 percent on average [45]. [45] is notable,
as it takes an alternative approach to the more common parallelization techniques called
model parallelization and data parallelization. Data Parallelism divides the dataset used
for training into smaller batches that are then used over multiple GPUs to train the mul-
tiple copies of the model in parallel. This is done because the size of the data may exceed
the available memory of the GPU being used. At the end of each training step, the models
can be synchronized into one unified model. Another approach is to not synchronize the
models, but instead, carry out the predictions of the final model by performing a vote
between each of the separate models. Model parallelism is similar to data parallelism in
principle, but instead of splitting the data, it splits the model into smaller components
that fit onto the memory of a single GPU, thus addressing the case of very large models,
such as large pre-trained transformers. Data and model parallelization introduce notable
obstacles for RNNs, as both of the techniques require the synchronization of gradients,
making the training inefficient [45]. Parallelization is less of an issue for CNNs, but CNNs
lack the memory of RNN-based models. With efficient parallelization out of the question

for RNNs, training duration blows out of proportion for large datasets. Model and Data

2.7. BOTTLENECKS OF NLP BEFORE THE TRANSFORMER 15

parallelism can much better be used with models like the Transformer, as a single input

must only be processed once, with no recursion needed.

The Transformer model rids itself of the issues discussed here, as it is able to both re-
member long-term dependencies and be trained with parallelization techniques hard for
RNN-based models. The Transformer model architecture is introduced and detailed in

the 2017 paper [56] and is summarized in the next section.

3 The Transformer Model

The Transformer is a neural network model architecture that applies encoder-decoder ar-
chitecture in conjunction with self-attention, multi-head attention, point-wise feedforward
networks, and positional encoding to carry out sequence transduction among many other
use cases. Its key innovation is the use of self-attention, which relates the positions of a
given sequence to compute its representation. Another distinguishing factor of the Trans-
former is the lack of recurrent or convolutional layers, which enables it to be trained with
higher levels of parallelization without losing memory. Together, these attributes make
the Transformer the superior choice in a vast array of different NLP tasks, such as machine

translation, sentiment analysis, textual entailment, text summarization, and generation.

3.1 Architecture of The Transformer Model

The architecture of the Transformer is described in a flowchart in Figure 3.1. Like most
other competitive approaches to MT, the Transformer consists of an encoder-decoder
structure. The encoder’s job is to map a sequence of symbol (e.g. word) representations to
an equal-length sequence of continuous representations. The continuous representations
encode as much information as possible about the given symbols, which includes the
position of the symbol in the sequence and the semantic interpretation. The continuous
representations are referred to as word embeddings. The word embeddings are then fed
into the decoder along with the outputs that may have already been generated by the
Transformer, this is known as auto-regression [56]. The decoder then generates a new
sequence of symbols one symbol at a time based on the inputs and the outputs generated

so far. The process is repeated until an "end" token is generated.

3.2 The Journey Through The Transformer

To demonstrate and learn the architecture of the Transformer, let’s examine a text inputs
journey through the encoder-decoder-based architecture and briefly explain the techniques
used as we go. Let there be a text input Who are you? that receives an output I am a

bot. generated by the Transformer.

3.2. THE JOURNEY THROUGH THE TRANSFORMER 17

Cutput
Probabililies

Feed

Forward
I Add & Norm F:
e Mult-Head
Feed Attention

Forward T 7 N
| | Add & Norm I::

Nx | —(TAdd&Nom) o

Multi-Head Multi-Head
Attention Attention
t t
\ J N —)
Pasitional A & Pasitional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 3.1: Transformer model architecture [56]

3.2.1 Word embeddings and Positional Encoding

As the symbols are fed into the Transformer, they must be encoded into the aforemen-
tioned word embeddings. The original Transformer model utilized what is called learned
embeddings, in which the words are represented as vectors of length d,,,q; with similar
words existing close to one another in the d,,,q.;-dimensional vector space. In our exam-
ple, the input tokens Who, are, and you? would be encoded into vectors of dimension
Amoder- After the word embedding has been looked up, a positional encoding is calculated
based on the index of the word in the sequence. A positional encoding communicates to
the model the relative index of the word in the given sequence and is of the same dimen-
sion as the word embedding. There are multiple options as to how a positional encoding
can be applied to an embedding. In [56], an interesting algorithm based on the sine and
cosine functions is used. In their implementation, each dimension of the positional en-
coding corresponds to a sinusoid. The algorithm for the positional encoding vector is the

following:

PFE(pos.2i) = 8in(pos/10000%/ dmodet) PE o1y = cos(pos /100002 dmodet)

18 CHAPTER 3. THE TRANSFORMER MODEL

where pos is the position and ¢ is the dimension. A sum operation is then performed
between the positional encoding and the word embedding to form the final product of the

embedding layer.

3.2.2 The Encoder Stack

The word representations are then fed into the encoder stack, which in the original ar-
chitecture consists of 6 identical layers, each containing 2 sub-layers, the multi-head self-
attention sub-layer, and the position-wise fully connected feedforward layer. Each of the

sub-layers accepts as input and produces as output d,,.q-dimensional data.

3.2.3 Multi-head Self-attention

The multi-head self-attention is one of the most important components in the Transformer,
as it replaces the convolutional and recurrent layers. Multi-head attention contains mul-
tiple "heads" of self-attention. Self-attention is a technique used to relate tokens of the
input sequence to each other. This way the model can recognize whether a previous input
word affects the current word in some way. For this, the Transformer uses an attention
mechanism called Scaled Dot-Product Attention (SDPA). The following is a description
of the self-attention process, which is performed in parallel for vectors named Query @),
Key K, and Value V. Each head of self-attention receives as input a slice of each @, K,
V vector. The @), K, and V vectors are derived by feeding the word embedding to three
unique FNNs.

SDPA receives as input three vectors that are derived from the word embedding by feeding
it into three separate fully connected layers. The dot products of the query are computed
for each key. The result of this is called a score matrix, which determines the relation
between the words in the input sequence. The score matrix is further scaled by ﬁ,
where dj, is the dimension of the query and key vectors. The scaling is done to prevent
exploding values, as multiplication is known to cause issues with scale. The result of the
scaling is fed into a softmax layer to obtain the weights for the value vector V. The
softmax produces a matrix of probabilities for each relation of each word. Finally, a
matrix multiplication is performed between the value vectors and the output matrix of
the softmax. This leads to irrelevant words being multiplied by smaller probabilities than
the relevant ones, which leads to the model paying more attention to the relevant words.

Further processing is applied by feeding the resulting vector into a linear fully connected

3.2. THE JOURNEY THROUGH THE TRANSFORMER 19

layer before being passed on to the second sub-layer of the encoder.

3.2.4 Residual Connection and Normalization

A residual connection is a path or a shortcut for input to skip over certain layers in the
architecture. A residual connection is used to combine the output of the multi-headed
attention layer with its input, as it has been found to improve the accuracy of the model
and make the model easier to optimize [26]. The summation is then normalized with [2]’s

method to reduce training time [56].

3.2.5 Position-wise Fully Connected Feedforward Network

The encoder layer includes a position-wise fully connected FNN with ReLLU activation
in between. While the FNN is identical for each position, they use different parameters
across the layers [56]. Similarly to the multi-head step, a residual connection is used to
combine the output of the FNN with its input, and the summation is normalized before
being fed to the decoder.

3.2.6 The Decoder Stack

The decoder’s task is to generate sequence outputs. The Transformer outputs one token
at a time, and the decoder stack receives each of the previous outputs as an additional
input sequence in addition to the current input in order to predict the next output of the
sequence. Each of the three sub-layers in the decoder stack employ a residual connection,
which is used for performing a sum operation with the input and the output of the sub-

layer.

3.2.7 Decoder Multi-head Self-attention and Masking

Receiving the previously generated outputs as additional input is called auto-regression.
Similarly to the initial input, a word embedding with positional encoding is generated for
the previous outputs. Before concatenating the previous output with the new input, it is
fed through a masked multi-head attention layer. Auto-regression introduces a problem
where the model relates past words to previous outputs in the score matrix. In order

to keep the auto-regressive property of the Transformer, the decoder’s multi-head layer

20 CHAPTER 3. THE TRANSFORMER MODEL

implements something called masking. In masking, illegal relationships are marked as
negative infinity in the score matrix, thus making the model ignore them completely.
Identically to the multi-head attention in the encoder, the output of the masked multi-

head attention is summed with the residual connection and normalized.

The normalized output is then used as the Value vector V' in the following layer of the
decoder, which is another multi-head attention layer. The Query) and Key K vectors
come from the encoder’s output. This combines the previous outputs with the current

input of the model.

3.2.8 Feedforward Neural Network, Linear Classification, and
Final Token Probabilities

The final layer of the decoder is another FNN, which is identical to the previous FNNs in
the model. A learned linear transformation that outputs a vector of size n is performed on
the final output of the decoder before passing it into a softmax layer, which will produce
the final probabilities for the next token [56]. For example, if the library of tokens consists
of n words, the output of the last layer is a vector of length n. The index of the greatest
scalar in the vector corresponds to the index of the next word. The predicted word is then
appended to the list of previous inputs and fed into the decoder. The process is repeated

until the model produces an end token.

3.3 Limitations of The Transformer Model

The Transformer has limitations. Its time complexity is quadratic due to the Scaled Dot-
Product Attention mechanism. This makes the Transformer slow in processing lengthy

inputs [32]. This, however, has been addressed by multiple papers such as [13].

Another perhaps surprising limitation of the Transformer is that of its heart, the Scaled
Dot-Product Attention. According to [25], self-attention is fundamentally limited in its
computational power. Self-attention can’t model basic recursion or periodic regular lan-
guages. From this, it can be derived that even when infinite precision is allowed for the
Transformer, it still can’t emulate general finite-state automata like RNNs can. This af-
fects the Transformer’s performance with long inputs, making mistakes inevitable if the
amount of heads in multi-head attention is not increased together with the input length.

It is noted in the paper, however, that the success of the Transformer indicates that such

3.3. LIMITATIONS OF THE TRANSFORMER MODEL 21

computational complexity may not be required for language modeling. For instance, lan-
guage uses recursion only in very restricted ways due to cognitive factors and is thus not

very important for self-attention to model.

Some more practical limitations of the Transformer include the need for a large corpus of
training data, its sequential and ambiguous nature, and limited interpretability as a deep

learning-based model.

4 The Transformer Model’s Impact

The Transformer model has had a transformative impact on NLP. The performance im-
provement brought on by effective parallelization has enabled the training of models of
colossal sizes. A lengthy context window and efficient mapping of token relations has
improved the accuracy and coherence of language models to represent more human-like
text. The vast majority of the most important benchmarks such as the WMT tasks
are dominated by transformer-based models. A previously under-utilized method of pre-
training and fine-tuning has brought the benefits of the best-performing and most world-
knowledgeable models to everyday developers, resulting in an influx of new ventures in the
space. Furthermore, the utilization of human feedback in training bleeding-edge models
and solutions such as flash attention [13] have addressed the most pressing issues of the

Transformer.

4.1 Overview of The Tasks Transformers Achieve High

Performance In

4.1.1 The Original Transformer Model

The results of the original Transformer model proposed by Vaswani et al. are described
in [56]. They are limited to MT tasks from the WMT 2014 datasets with two versions of
the model being used to make translations. The versions are called base model and big
model. The big model performs at a higher level than the base model, but the base model
can still generate state-of-the-art results. The models were trained using NVIDIA’s P100
GPUs. The big model was trained for 3.5 days and the base model was trained for around
12 hours [56].

WMT 2014 Translation Tasks

The big Transformer model proposed by Vaswani et al. performed better than all the
previous state-of-the-art models on the English-to-German translation task while using

significantly less computation time and power. The new state-of-the-art established by

4.1. OVERVIEW OF THE TASKS TRANSFORMERS ACHIEVE HIGH PERFORMANCE IN23

the Transformer model at the time of the paper’s release was 28.4 BLEU. That is an
improvement of more than 2.0 BLEU with significantly reduced training time. To measure
the effect of different components of the architecture, Vaswani et al. "varied their base
model in different ways". The changes were then measured by the changes in performance
on the English-to-German translation task with its development set called newstest2013
[56]. The tests concluded that in multi-head attention, more heads are better than just
one, but too many heads will decrease performance; decreasing the attention key size hurts
the model’s performance; and larger models, as in more trainable parameters, result in

increased performance.

The new state-of-the-art result established by the Transformer model in English-to-French
is 41.0 BLEU, some 0.44 increase in BLEU for the top performing single model MoE while

only using around one-fourth of the training cost.

4.1.2 Transformer-based Models

The revolution of NLP begins with the Transformer model, but the real advances are not
made by the Transformer model in the form Vaswani et al. introduced it. They are made
with models that rely on the architecture of the Transformer, making it better with mod-
ifications. These models are called Transformer-based models (alternatively X-formers) in
the literature. Some of the most notable Transformer-based models are Google’s BERT
[15] and its variants like RoOBERTa [39], ALBERT [36], ELECTRA [11], and OpenAT’s
GPT models. Transformer-based models dominate the benchmarks on the vast majority
of NLP tasks. Let’s take a look at the following tasks: Text Classification (TC), Ques-
tion Answering (QA), and Machine Translation (MT). These tasks have been chosen as
they represent classification, text generation, and translation tasks, which demonstrate
the diversity of NLP tasks.

Text Classification

TC is a classic NLP task in which a text is presented to the model for it to predict the
category that the text is a part of. The IMDb Benchmark dataset has gained notoriety
as a landmark text classification dataset. Countless different models have been applied to
derive sentiment from the IMDb reviews, these include GRUs [53], SVMs, Naive Bayes,
among others [55]. At present, transformer-based models reign the leaderboards with a
model called Transformer-XL, and its variants XLNet and ERNIE-Doc being the state-of-

24 CHAPTER 4. THE TRANSFORMER MODEL’S IMPACT

the-art [58]. ERNIE-Doc-Large achieves the best performance, scoring an impressive 97.1

accuracy on the classification task [16].

Question Answering

QA is a field of natural language processing that has experienced a total transformation af-
ter the Transformer model was introduced in 2017. Long-term dependencies are extremely
important in generating responses to questions in which the answer is highly context-
dependent. The top-performing model at the present time is a model called ANNA [30],
which is a model specifically tailored for QA tasks. Anna reaches an F1l-score of 95.719,
XLNet follows closely behind with an F1l-score of 95.080 [58].

Machine Translation

MT is another ubiquitous benchmark for the assessment of LLMs. It is also another area
that Transformer-based models reign supreme. Here, we can yet again take a look at the
renowned WMT2014 datasets, such as English-to-German. All 5 top-performing models
are Transformer-based models, with the best results being generated by a novel technique

called parameter sharing for Transformers [52].

4.1.3 Performance Conclusion

The state-of-the-art metrics are dominated by Transformer-based models with record met-
rics published yearly. To illustrate the dominance of the Transformer, examine this table

of record holders in popular tasks and datasets.

Dataset IMDb SQuAD1.1 WMT2014 E-t-G

Task / Metric | TC Accuracy | QA F1 MT BLEU
#1 ERNIE-Doc-Large | 97.1 ANNA 95.72 | Transformer Cycle | 35.14
#2 XLNet 96.8 LUKE 95.38 | back-translations | 35.00
#3 RoBERTa 96.6 XLNet 95.08 | Transformer+Rep | 33.89

4.2. BYPRODUCTS OF THE TRANSFORMER MODEL 25

4.2 Byproducts of The Transformer Model

The Transformer model’s robustness paired with swift innovation from affuent industry
players is enabling efficient new ways to work with LLMs. It is also strengthening their
pre-existing use cases. The following are areas of NLP that have experienced an overhaul

with the coming of the Transformer model.

4.2.1 Pre-training

Pre-training means creating a foundation model by training a chosen model with typically
a large corpus of sequential data. The pre-trained model can then be fine-tuned, which
translates to training the pre-trained model with yet more data for a specific task. Pre-
training is known to achieve significant performance gains in various tasks. In addition,
when pre-training the model with seemingly unrelated data with respect to the final task,
the model gains world knowledge, which can broaden the model’s understanding of the
final task.

While Pre-trained neural networks existed before the Transformer model, they were not
as popular as they have become due to the utility they provide for Transformers. Since
then, massive effort has been dedicated to pre-training Transformer models on large-
scale text corpora, which is believed to be one of the major reasons of the Tranformer’s
wide application in NLP [37]. A commercial landmark paper on pre-training, and more
specifically generative pre-training is [48], which demonstrates that large gains on various
NLP tasks can be realized by generative pre-training of language models. Due to the
robustness of Transformers and the advances in computation, pre-training can be done

with an extensive corpus without compromising model performance.

4.2.2 Generative Al

The Transformer model’s significance in the popularization of generative Al is undisputed.
Generative Al is among the first signs of Al breaking into mainstream consumer products
as the main attraction. Transformers in generative Al have proved themselves mainly in
the context of text generation. In the public eye, commercial LLMs like the GPT family
have completely transformed the landscape of NLP, which has been a major contributor in

generative AT companies raising up to 1.6 billion in funding in the first quarter of 2023 [21].

26 CHAPTER 4. THE TRANSFORMER MODEL’S IMPACT

Other pre-trained models include the BERT model and its variants. Generative Al requires
vast amounts of data, which Transformers are exceptionally good with in comparison to
previous state-of-the-art models like LSTMs and RNNs. This is why the architecture has
allowed for colossal models such as GPT-4, which boasts 175 billion trainable parameters

[7], 10 times more than any previous non-sparse LM.

4.2.3 Multi-lingual and Multi-modal Capabilities

Pre-trained transformers have demonstrated success in generalizing across languages [35].
multilingual BERT [15], for example, was trained on 104 languages and when fine-tuned for
new downstream tasks, it can transfer resources from resource-rich languages like English
to low-resource languages like Swahili. This essentially means that knowledge is possible
to have knowledge transferred from one language to another. Thus, Transformers have

opened new avenues for multilingual language processing.

Multi-modal inputs are another advancement that has sprung from the Transformer. Re-
cently, models like GPT-4 have demonstrated impressive capabilities in understanding
multi-modal content that includes images and text. The text and images can be "arbitrar-
ily interlaced" [46]. Embedding images into the input data has not degraded the quality
of the outputs according to [46]. Another notable multi-modal LM is ViLBERT, which
is a variation of BERT that has been extended to a multi-modal two-stream model to
process visual and textual inputs. The inputs are given separately and concatenated in
so-called co-attentional layers of the Transformer-based model’s architecture. At the time
of its release, VILBERT could have been considered a state-of-the-art model in its class,

reaching state-of-the-art on all 4 tasks it was proposed with [40].

5 Conclusion

Transformer-based models are improving constantly with more papers released on novel
ways to overcome the foundational issue of the original Transformer model, which is the
quadratic computational complexity of the self-attention mechanism with respect to the
input sequence length [54]. With the attention and funding that machine learning and Al
have attracted in light of the recent commercial breakthroughs of NLP systems, it can be
speculated that the rate of innovation will only accelerate in NLP with transformer-based
solutions. The Transformer model has been able to vitalize the field of NLP with its
qualities such as parallelization, long-term dependency capabilities, and multi-modality.
It is especially interesting to see the already-present transformation that rapid innovation

will bring in the following decades.

This thesis was set to uncover the history of NLP, the rise of deep learning, what the
Transformer architecture is, and ultimately how it has impacted the field. Broadly, the
Transformer has brought on a new era in Al research and utilization, embarked on the
commercial revolution of Al, and solidified paradigms like pre-trained machine learning
models and generative Al. Transformer-based models are vastly the architecture of choice
when approaching any given NLP task, and have populated the research area with state-of-
the-art solutions as is illustrated in section 4.1.3. Massive, multi-modal, and multi-lingual
models have been proposed. Transformers are now the industry standard for commercial
NLP applications, bridging the gap between high and low-resource languages, and are
actively becoming more general with multi-modality [8]. T hope this thesis has helped
the reader in getting a hold of the disorderly world of NLP through a historical overview,
the Transformer model and its components, the relevant benchmarks, and the emerging
byproducts of NLP innovation like generative NLP, multi-modality, and commercializa-

tion.

Bibliography

D. Andina, A. Vega-Corona, J. Seijas, and J. Torres-Garcia. “Neural networks his-
torical review”. In: Computational Intelligence: for Engineering and Manufacturing
(2007), pp. 39-65.

J. L. Ba, J. R. Kiros, and G. E. Hinton. “Layer normalization”. In: arXiv preprint
arXiv:1607.06450 (2016).

D. Bahdanau, K. Cho, and Y. Bengio. “Neural machine translation by jointly learn-
ing to align and translate”. English. In: International Conference on Learning Rep-
resentations, ICLR, 2015.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. “Automatic
differentiation in machine learning: a survey”. In: Journal of Marchine Learning
Research 18 (2018), pp. 1-43.

Y. Bengio, R. Ducharme, and P. Vincent. “A neural probabilistic language model”.

In: Advances in neural information processing systems 13 (2000).

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling, C. Monz, P.
Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and A. Tamchyna. “Findings
of the 2014 Workshop on Statistical Machine Translation”. In: Proceedings of the
Ninth Workshop on Statistical Machine Translation. Baltimore, Maryland, USA:
Association for Computational Linguistics, June 2014, pp. 12-58. DOI: 10.3115/v1/
W14-3302.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T.
Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A.
Radford, I. Sutskever, and D. Amodei. “Language Models are Few-Shot Learners”.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M.
Ranzato, R. Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020,
pp. 1877-1901. URL: https://proceedings .neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper. pdf.

https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[10]

[11]

[12]

[13]

[14]

[15]

29

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee,
Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang.
Sparks of Artificial General Intelligence: Early experiments with GPT-4. 2023. arXiv:
2303.12712 [cs.CL].

A. Chaman and I. Dokmanic. “Truly shift-invariant convolutional neural networks”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 3773-3783.

K. R. Chowdhary. “Natural Language Processing”. In: Fundamentals of Artificial
Intelligence. New Delhi: Springer India, 2020, pp. 603—-649.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. “ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators”. In: International Conference

on Learning Representations. 2020.

R. Collobert and J. Weston. “A Unified Architecture for Natural Language Process-
ing: Deep Neural Networks with Multitask Learning”. In: ICML ’08. Association for
Computing Machinery, 2008, pp. 160-167. Dor: 10.1145/1390156.1390177.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. FlashAttention: Fast and Memory-
Efficient Fxact Attention with 10-Awareness. 2022. arXiv: 2205.14135 [cs.LG].

W. De Mulder, S. Bethard, and M.-F. Moens. “A survey on the application of recur-
rent neural networks to statistical language modeling”. In: Computer Speech Lan-
guage 30.1 (2015), pp. 61-98. DOI: https://doi.org/10.1016/7.csl.2014.09.
005.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for Computational Linguistics, June
2019, pp. 4171-4186. DOIL: 10.18653/v1/N19-1423.

S. Ding, J. Shang, S. Wang, Y. Sun, H. Tian, H. Wu, and H. Wang. “ERNIE-
Doc: A Retrospective Long-Document Modeling Transformer”. In: Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, Aug. 2021, pp. 2914-2927. pOI:
10.18653/v1/2021.acl-1long.227.

https://arxiv.org/abs/2303.12712
https://doi.org/10.1145/1390156.1390177
https://arxiv.org/abs/2205.14135
https://doi.org/https://doi.org/10.1016/j.csl.2014.09.005
https://doi.org/https://doi.org/10.1016/j.csl.2014.09.005
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.227

30

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

CHAPTER 5. CONCLUSION

H. L. Dreyfus. “From micro-worlds to knowledge representation: Al at an impasse”.
In: Mind design (1981), pp. 161-204.

C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith. “Recurrent Neural Network
Grammars”. In: Proceedings of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technolo-
gies. San Diego, California: Association for Computational Linguistics, June 2016,
pp. 199-209. por: 10.18653/v1/N16-1024.

K. Fukushima. “Neocognitron: a self organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position”. en. In: Biol. Cybern.
36.4 (1980), pp. 193-202.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. “Convolutional
sequence to sequence learning”. In: International conference on machine learning.
PMLR. 2017, pp. 1243-1252.

Generative Al startups jockey for VC dollars. Accessed: 2010-09-30.

F. A. Gers and J. Schmidhuber. “Recurrent nets that time and count”. In: Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Mil-
lennium. Vol. 3. IEEE. 2000, pp. 189-194.

Y. Goldberg. “A primer on neural network models for natural language processing”.
In: Journal of Artificial Intelligence Research 57 (2016), pp. 345-420.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G.
Wang, J. Cai, and T. Chen. “Recent advances in convolutional neural networks”. In:
Pattern Recognition 77 (2018), pp. 354-377. 1SSN: 0031-3203.

M. Hahn. “Theoretical Limitations of Self-Attention in Neural Sequence Models”.
In: Transactions of the Association for Computational Linguistics 8 (Jan. 2020),

pp- 156-171. po1: 10.1162/tacl _a 00306.

K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770-778.

S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computa-
tion 9.8 (1997), pp. 1735-1780.

https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.1162/tacl_a_00306

28]

[29]

[30]

[31]

[32]

[34]

[35]

31

J. J. Hopfield. “Neural networks and physical systems with emergent collective
computational abilities.” In: Proceedings of the National Academy of Sciences 79.8
(1982), pp. 2554-2558. DOL: 10.1073/pnas.79.8.2554.

K. S. Jones. “Natural language processing: a historical review”. In: Current issues

in computational linguistics: in honour of Don Walker (1994), pp. 3—16.
C. Jun, H. Jang, M. Sim, H. Kim, J. Choi, K. Min, and K. Bae. “ANNA: Enhanced

Language Representation for Question Answering”. In: Proceedings of the 7th Work-
shop on Representation Learning for NLP. Dublin, Ireland: Association for Compu-
tational Linguistics, May 2022, pp. 121-132. DOI: 10.18653/v1/2022 . repldnlp-
1.13.

L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszko-
reit. “One model to learn them all”. In: arXiv preprint arXiv:1706.05137 (2017).

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. “Transformers are RNNs:
Fast Autoregressive Transformers with Linear Attention”. In: Proceedings of the
37th International Conference on Machine Learning. Ed. by H. D. IIT and A. Singh.
Vol. 119. Proceedings of Machine Learning Research. PMLR, 13-18 Jul 2020, pp. 5156—
5165.

M. Kaur and A. Mohta. “A Review of Deep Learning with Recurrent Neural Net-
work”. In: 2019 International Conference on Smart Systems and Inventive Technol-
ogy (ICSSIT). 2019, pp. 460-465. DOL: 10.1109/ICSSIT46314.2019.8987837.

U. Khandelwal, H. He, P. Qi, and D. Jurafsky. “Sharp Nearby, Fuzzy Far Away: How
Neural Language Models Use Context”. In: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Mel-
bourne, Australia: Association for Computational Linguistics, July 2018, pp. 284—
294. por: 10.18653/v1/P18-1027.

Y. Khemchandani, S. Mehtani, V. Patil, A. Awasthi, P. Talukdar, and S. Sarawagi.
“Exploiting Language Relatedness for Low Web-Resource Language Model Adapta-
tion: An Indic Languages Study”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers). Online: Association
for Computational Linguistics, Aug. 2021, pp. 1312-1323. DOI: 10.18653/v1/2021 .
acl-long.105.

https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.18653/v1/2022.repl4nlp-1.13
https://doi.org/10.18653/v1/2022.repl4nlp-1.13
https://doi.org/10.1109/ICSSIT46314.2019.8987837
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/2021.acl-long.105
https://doi.org/10.18653/v1/2021.acl-long.105

32

[36]

37]

[38]

[39]

[40]

[45]

CHAPTER 5. CONCLUSION

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. “ALBERT:
A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REP-
RESENTATIONS”. In: 8th International Conference on Learning Representations,
ICLR 2020.

T. Lin, Y. Wang, X. Liu, and X. Qiu. “A survey of transformers”. In: Al Open
(2022).

S. Linnainmaa. “The representation of the cumulative rounding error of an algorithm
as a Taylor expansion of the local rounding errors”. PhD thesis. Master’s Thesis (in
Finnish), Univ. Helsinki, 1970.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. 2019. arXiv: 1907 .11692 [cs.CL].

J. Lu, D. Batra, D. Parikh, and S. Lee. “ViLBERT": Pretraining Task-Agnostic Visi-
olinguistic Representations for Vision-and-Language Tasks”. In: Advances in Neural
Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019.

L. R. Medsker and L. Jain. “Recurrent neural networks”. In: Design and Applications
5 (2001), pp. 64-67.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient estimation of word repre-
sentations in vector space”. In: 1st International Conference on Learning Represen-
tations, ICLR 2013 - Workshop Track Proceedings. 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. “Distributed represen-

tations ofwords and phrases and their compositionality”. In: 2013.

P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman. “Natural language pro-
cessing: an introduction”. In: Journal of the American Medical Informatics Associa-
tion 18.5 (Sept. 2011), pp. 544-551. 1SSN: 1067-5027. DOL: 10.1136/amiajnl-2011-
000464.

D. Niu, T. Liu, T. Cai, and S. Zhou. “The Asynchronous Training Algorithm Based
on Sampling and Mean Fusion for Distributed RNN”. In: IEEE Access 8 (2020),
pp. 62439-62447. por: 10.1109/ACCESS.2019.2939851.

OpenAl. GPT-4 Technical Report. 2023.

https://arxiv.org/abs/1907.11692
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1109/ACCESS.2019.2939851

[48]

[49]

[52]

[53]

[57]

33

B. Pang, L. Lee, and S. Vaithyanathan. “Thumbs up? Sentiment Classification using
Machine Learning Techniques”. In: Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2002. 2002, pp. 79-86.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language

understanding by generative pre-training. 2018.

Recurrent Neural Networks cheatsheet. https://stanford.edu/ shervine/teaching/cs-
230/cheatsheet-recurrent-neural-networks. Accessed: 2023-04-03.

F. Rosenblatt. “The perceptron: a probabilistic model for information storage and

organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

A. Sherstinsky. “Fundamentals of Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) network”. In: Physica D: Nonlinear Phenomena 404 (2020),
p. 132306. 1sSN: 0167-2789. DOI: https://doi.org/10.1016/j . physd.2019.
132306.

S. Takase and S. Kiyono. “Lessons on parameter sharing across layers in transform-
ers”. In: arXiv preprint arXiv:2104.06022 (2021).

D. Tang, B. Qin, and T. Liu. “Document Modeling with Gated Recurrent Neural
Network for Sentiment Classification”. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Sept. 2015, pp. 1422-1432. por: 10.18653/v1/D15-1167.

Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. “Efficient Transformers: A Survey”.
In: ACM Computing Surveys 55.6 (2022). DOI: 10.1145/3530811.

A. Tripathy, A. Agrawal, and S. K. Rath. “Classification of sentiment reviews using
n-gram machine learning approach”. In: Expert Systems with Applications 57 (2016),
pp- 117-126. po1: 10.1016/j.eswa.2016.03.028.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, .. Kaiser,
and I. Polosukhin. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems. Ed. by 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

Y. Yang, W.-t. Yih, and C. Meek. “Wikiqa: A challenge dataset for open-domain
question answering”. In: Proceedings of the 2015 conference on empirical methods in

natural language processing. 2015, pp. 2013-2018.

https://doi.org/https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.18653/v1/D15-1167
https://doi.org/10.1145/3530811
https://doi.org/10.1016/j.eswa.2016.03.028

34 CHAPTER 5. CONCLUSION

[58] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. “Xlnet:
Generalized autoregressive pretraining for language understanding”. In: Advances in

neural information processing systems 32 (2019).

[59] W. Yin, K. Kann, M. Yu, and H. Schiitze. “Comparative study of CNN and RNN
for natural language processing”. In: arXiv preprint arXiv:1702.01923 (2017).

[60] T. Young, D. Hazarika, S. Poria, and E. Cambria. “Recent trends in deep learn-
ing based natural language processing [Review Article|”. In: IEEE Computational
Intelligence Magazine 13.3 (2018), pp. 55-75. DOI: 10.1109/MCI.2018.2840738.

[61] Y. Yu, X. Si, C. Hu, and J. Zhang. “A review of recurrent neural networks: LSTM
cells and network architectures”. In: Neural computation 31.7 (2019), pp. 1235-1270.

https://doi.org/10.1109/MCI.2018.2840738

	Introduction
	Historical Overview
	Toward Deep Learning
	Re-emergence of Deep Learning
	The Perceptron
	Architecture of The Perceptron
	Backpropagation

	Recurrent Neural Networks
	Architecture of Recurrent Neural Networks
	LSTM

	Convolutional Neural Networks
	Architecture of Convolutional Neural Networks

	Pre-Transformer State-Of-The-Art
	Bottlenecks of NLP Before the Transformer

	The Transformer Model
	Architecture of The Transformer Model
	The Journey Through The Transformer
	Word embeddings and Positional Encoding
	The Encoder Stack
	Multi-head Self-attention
	Residual Connection and Normalization
	Position-wise Fully Connected Feedforward Network
	The Decoder Stack
	Decoder Multi-head Self-attention and Masking
	Feedforward Neural Network, Linear Classification, and Final Token Probabilities

	Limitations of The Transformer Model

	The Transformer Model's Impact
	Overview of The Tasks Transformers Achieve High Performance In
	The Original Transformer Model
	Transformer-based Models
	Performance Conclusion

	Byproducts of The Transformer Model
	Pre-training
	Generative AI
	Multi-lingual and Multi-modal Capabilities

	Conclusion
	Bibliography

